Grain-size effect on the deformation mechanisms of nanostructured copper processed by high-pressure torsion
نویسندگان
چکیده
The unique nonuniform deformation characteristic of high-pressure torsion was used to produce nanostructures with systematically varying grain sizes in a copper disk, which allows us to study the grain-size effect on the deformation mechanisms in nanostructured copper using a single sample. The as-processed copper disk has 100–200 nm grains near its center and 10–20 nm grains at its periphery. High densities of full dislocations (2 10/m) were distributed nonuniformly in large grains, implying that dislocation slip is the dominant deformation mechanism. With increasing dislocation density, the dislocations accumulated and rearranged, forming elongated nanodomains. The originally formed nanodomains remain almost the same crystalline orientation as their parent large grains. Further deformation occurred mainly through partial dislocation emissions from nanodomain boundaries, resulting in high density of nanotwins and stacking faults in the nanodomains. The elongated nanodomains finally transformed into equiaxed nanocrystalline grains with large-angle grain boundaries. The results suggest that grain boundary rotation and grain boundary sliding might play a significant role in the formation of large-angle grain boundaries in nanocrystalline grains. These experimental results show that different deformation mechanisms operate at different length scales and confirm unambiguously the deformation mechanisms of nanocrystalline grains predicted by molecular dynamic simulations. © 2004 American Institute of Physics. DOI: 10.1063/1.1757035
منابع مشابه
Review on ultrafined/nanostructured magnesium alloys produced through severe plastic deformation: microstructures
A review on the microstructural evolution in magnesium alloys during severe plastic deformation waspresented. The challenges deserved to achieve ultrafine/ nanostructured magnesium were discussed.The characteristics of the processed materials are influenced by three main factors, including i)difficult processing at low temperatures, ii) high temperature processing and the occurrence ofdynamic r...
متن کاملEffect of HPT and CGP Processes on the Copper Me-chanical Properties
One of the most common methods for production of ultra fine grained materials is severe plastic deformation (SPD). In this study, constrained groove pressing (CGP) and high pressure torsion (HPT) processes as effective methods of severe plastic deformation for the strain imposed on the pure copper were used. This paper presents the results of an experimental research, to review the influence of...
متن کاملEffect of Pre-existing Nano Sized Precipitates on Microstructure and Mechanical Property of Al-0.2wt% Sc Highly Deformed by ARB Process
The effect of pre-existing nano sized precipitates on the mechanisms and rate of grain refinement has been investigated during the severe plastic deformation. A binary Al–0.2Sc alloy, containing coherent Al3Sc particles, of 3.62 nm in diameter has been deformed by accumulative roll bonding up to 10 cycles. The resulting deformed structures were quantitatively analyzed using electron backscatter...
متن کاملGrain Refinement Efficiency of Multi-Axial Incremental Forging and Shearing: A Crystal Plasticity Analysis
Severe plastic deformation is a technical method to produce functional material with special properties such as high strength and specific physical properties. Selection of an efficient severe plastic deformation for grain refinement is a challenging field of study and using a modeling technique to predict the refinement efficiency has gained a lot of attentions. A comparative study was carried...
متن کاملNumerical Analysis of Severe Plastic Deformation by High Pressure Torsion
High-pressure torsion (HPT) is a metal processing method in which the sample is subjected to a very high plastic shear deformation. This process can produce exceptional levels of grain refinement, and provides a corresponding improvement in mechanical properties. To investigate the stress and strain distribution due to HPT process finite element simulation were conducted to investigate effectiv...
متن کامل